Mechanics of materials

Chapter five

Torsion

By

Laith Batarseh

Torsion

5.1. Torsional deformation of circular shaft

DAssume the circular shaft shown in the figure(a) with the circular grid shown. If a torque is applied to the member as shown in figure (b) and the deformation is assumed to be small then The circles in the grid will remain circles and the longitudinal lines will deform in helical (spiral) line.
[From that, we can assume that the radius and the length of the shaft will remain constant.

Torsion

5.1. Torsional deformation of circular shaft

In torsion, the strain is represented by twist angle ($\boldsymbol{\phi}(\mathbf{x})$).
\square As we move in the x-axis, a small difference in the twist angle $(\Delta \phi)$ will occur. This difference causes the member to has a shear strain (γ):

$$
\gamma=\frac{\pi}{2}-\theta^{\prime}
$$

The angle of twist $\phi(x)$ increases as x increases.
Fig. 5-2

Torsion

TORSION FORMULA

Assumptions:

- Linear and elastic deformation
- Plane section remains plane and undistorted

If we assume that the torsion stress vary linearly from the inside to the outside then $\tau=\frac{\rho}{c} \tau_{\text {max }}$
Torsion - shear relationship:
$T=\int_{A} \rho(\tau) d A=\int_{A} \rho\left(\frac{\rho}{c}\right) \tau_{\max } d A$
$T=\frac{\tau_{\max }}{c} \int_{A} \rho^{2} d A$
$\tau_{\text {max }}=\frac{T c}{J}$
Similarily, $\tau=\frac{T \rho}{J}$

EXAMPLE 5.1

The solid shaft of radius c is subjected to a torque \mathbf{T}, Fig. 5-10a. Determine the fraction of T that is resisted by the material contained within the outer region of the shaft, which has an inner radius of $c / 2$ and outer radius c.

SOLUTION
The stress in the shaft varies linearly, such that $\tau=(\rho / c) \tau_{\max }$, Eq. 5-3. Therefore, the torque $d T^{\prime}$ on the ring (area) located within the lighter-shaded region, Fig. 5-10b, is

$$
d T^{\prime}=\rho(\tau d A)=\rho(\rho / c) \tau_{\max }(2 \pi \rho d \rho)
$$

For the entire lighter-shaded area the torque is

$$
\begin{aligned}
T^{\prime} & =\frac{2 \pi \tau_{\max }}{c} \int_{c / 2}^{c} \rho^{3} d \rho \\
& =\left.\frac{2 \pi \tau_{\max }}{c} \frac{1}{4} \rho^{4}\right|_{c / 2} ^{c}
\end{aligned}
$$

So that

$$
\begin{equation*}
T^{\prime}=\frac{15 \pi}{32} \tau_{\max } c^{3} \tag{1}
\end{equation*}
$$

(a)

(b)

Fig. 5-10

EXAMPLE 5.1CONTINUED

This torque T^{\prime} can be expressed in terms of the applied torque T by first using the torsion formula to determine the maximum stress in the shaft. We have

$$
\tau_{\max }=\frac{T c}{J}=\frac{T c}{(\pi / 2) c^{4}}
$$

or

$$
\tau_{\max }=\frac{2 T}{\pi c^{3}}
$$

Substituting this into Eq. 1 yields

$$
T^{\prime}=\frac{15}{16} T
$$

Ans.

NOTE: Here, approximately 94% of the torque is resisted by the lighter-shaded region, and the remaining 6% (or $\frac{1}{16}$) of T is resisted by the inner "core" of the shaft, $\rho=0$ to $\rho=c / 2$. As a result, the material located at the outer region of the shaft is highly effective in resisting torque, which justifies the use of tubular shafts as an efficient means for transmitting torque, and thereby saving material.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE 5.2

EXAMPLE 5.2 CONTINUED

SOLUTION
Internal Torque. The bearing reactions on the shaft are zero, provided the shaft's weight is neglected. Furthermore, the applied torques satisfy moment equilibrium about the shaft's axis.

The internal torque at section $a-a$ will be determined from the free-body diagram of the left segment, Fig. 5-11 b. We have
(c)
$\Sigma M_{x}=0 ; \quad 42.5 \mathrm{kip} \cdot \mathrm{in} .-30 \mathrm{kip} \cdot \mathrm{in} .-T=0 \quad T=12.5 \mathrm{kip} \cdot \mathrm{in}$.
Section Property. The polar moment of inertia for the shaft is

$$
J=\frac{\pi}{2}(0.75 \mathrm{in} .)^{4}=0.497 \mathrm{in}^{4}
$$

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE 5.2 CONTINUED

Shear Stress. Since point A is at $\rho=c=0.75 \mathrm{in}$.,

$$
\tau_{A}=\frac{T c}{J}=\frac{(12.5 \mathrm{kip} \cdot \mathrm{in} .)(0.75 \mathrm{in} .)}{\left(0.497 \mathrm{in}^{4}\right)}=18.9 \mathrm{ksi} \quad \text { Ans. }
$$

Likewise for point B, at $\rho=0.15$ in., we have

$$
\tau_{B}=\frac{T \rho}{J}=\frac{(12.5 \mathrm{kip} \cdot \mathrm{in} .)(0.15 \mathrm{in} .)}{\left(0.497 \mathrm{in}^{4}\right)}=3.77 \mathrm{ksi} \quad \text { Ans. }
$$

NOTE: The directions of these stresses on each element at A and B, Fig. 5-11c, are established from the direction of the resultant internal torque T, shown in Fig. 5-11b. Note carefully how the shear stress acts on the planes of each of these elements.

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hal

EXAMPLE 5.3

The pipe shown in Fig. 5-12a has an inner diameter of 80 mm and an outer diameter of 100 mm . If its end is tightened against the support at A using a torque wrench at B, determine the shear stress developed in the material at the inner and outer walls along the central portion of the pipe when the $80-\mathrm{N}$ forces are applied to the wrench.

SOLUTION

Internal Torque. A section is taken at an intermediate location C along the pipe's axis, Fig. 5-12b. The only unknown at the section is the internal torque \mathbf{T}. We require

$$
\begin{gathered}
\Sigma M_{y}=0 ; \quad 80 \mathrm{~N}(0.3 \mathrm{~m})+80 \mathrm{~N}(0.2 \mathrm{~m})-T=0 \\
T=40 \mathrm{~N} \cdot \mathrm{~m}
\end{gathered}
$$

Section Property. The polar moment of inertia for the pipe's
 cross-sectional area is

$$
J=\frac{\pi}{2}\left[(0.05 \mathrm{~m})^{4}-(0.04 \mathrm{~m})^{4}\right]=5.796\left(10^{-6}\right) \mathrm{m}^{4}
$$

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hal

EXAMPLE 5.3 CONTINUED

Shear Stress. For any point lying on the outside surface of the pipe, $\rho=c_{o}=0.05 \mathrm{~m}$, we have

$$
\tau_{o}=\frac{T c_{o}}{J}=\frac{40 \mathrm{~N} \cdot \mathrm{~m}(0.05 \mathrm{~m})}{5.796\left(10^{-6}\right) \mathrm{m}^{4}}=0.345 \mathrm{MPa} \quad \text { Ans. }
$$

And for any point located on the inside surface, $\rho=c_{i}=0.04 \mathrm{~m}$, so that

$$
\tau_{i}=\frac{T c_{i}}{J}=\frac{40 \mathrm{~N} \cdot \mathrm{~m}(0.04 \mathrm{~m})}{5.796\left(10^{-6}\right) \mathrm{m}^{4}}=0.276 \mathrm{MPa} \quad \text { Ans. }
$$

NOTE: To show how these stresses act at representative points D and E on the cross-section, we will first view the cross section from the front of segment $C A$ of the pipe, Fig. 5-12a. On this section, Fig. 5-12c, the resultant internal torque is equal but opposite to that shown in Fig. $5-12 b$. The shear stresses at D and E contribute to this torque and therefore act on the shaded faces of the elements in the directions shown. As a consequence, notice how the shear-stress components act on the other three faces. Furthermore, since the top face of D and the inner face of E are in stress-free regions taken from the pipe's outer and inner walls, no shear stress can exist on these faces or on the other corresponding faces of the elements.

(c)

Fig. 5-12

Torsion

Power transmission
Shaft design: if the power transmitted and the machine frequency are known, the torque can be found as

$$
T=\frac{P}{\omega}=\frac{P}{2 \pi f}
$$

The value of (T) mustn't exceed the allowable torsion stress ($\tau_{\text {allow }}$). The torsion stress formula is substituted in the power equation above, we will have a design criteria for solid shaft that has radius equal (c)

$$
\frac{J}{c}=\frac{T}{\tau_{\text {allow }}}
$$

What you need to find is the minimum c that bear the applied stress. Remember that \boldsymbol{J} contains the term c

EXAMPLE 5.4

A solid steel shaft $A B$ shown in Fig. 5-13 is to be used to transmit 5 hp from the motor M to which it is attached. If the shaft rotates at $\omega=175 \mathrm{rpm}$ and the steel has an allowable shear stress of $\tau_{\text {allow }}=14.5 \mathrm{ksi}$, determine the required diameter of the shaft to the nearest $\frac{1}{8} \mathrm{in}$.

Fig. 5-13
Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE 5 5.4 CONTINUED

SOLUTION
The torque on the shaft is determined from Eq. 5-10, that is, $P=T \omega$.
Expressing P in foot-pounds per second and ω in radians/second,
we have

$$
\begin{aligned}
& P=5 \mathrm{hp}\left(\frac{550 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s}}{1 \mathrm{hp}}\right)=2750 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s} \\
& \omega=\frac{175 \mathrm{rev}}{\min }\left(\frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=18.33 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Thus,

$$
\begin{array}{cc}
P=T \omega ; & 2750 \mathrm{ft} \cdot \mathrm{lb} / \mathrm{s}=T(18.33 \mathrm{rad} / \mathrm{s}) \\
T=150.1 \mathrm{ft} \cdot \mathrm{lb}
\end{array}
$$

Applying Eq. 5-12 yields

$$
\begin{aligned}
\frac{J}{c} & =\frac{\pi}{2} \frac{c^{4}}{c}=\frac{T}{\tau_{\text {allow }}} \\
c=\left(\frac{2 T}{\pi \tau_{\text {allow }}}\right)^{1 / 3} & =\left(\frac{2(150.1 \mathrm{ft} \cdot \mathrm{lb})(12 \mathrm{in} . / \mathrm{ft})}{\pi\left(14500 \mathrm{lb} / \mathrm{in}^{2}\right)}\right)^{1 / 3} \\
c & =0.429 \mathrm{in} .
\end{aligned}
$$

Since $2 c=0.858$ in., select a shaft having a diameter of

$$
d=\frac{7}{8} \text { in. }=0.875 \text { in. Ans. }
$$

EXAMPLE 5.5

The gears attached to the fixed-end steel shaft are subjected to the torques shown in Fig. 5-19a. If the shear modulus of elasticity is 80 GPa and the shaft has a diameter of 14 mm , determine the displacement of the tooth P on gear A. The shaft turns freely within the bearing at B.

Internal Torque. By inspection, the torques in segments $A C, C D$, and $D E$ are different yet constant throughout each segment. Free-body diagrams of appropriate segments of the shaft along with the calculated internal torques are shown in Fig. 5-19b. Using the right-hand rule and the established sign convention that positive torque is directed away from the sectioned end of the shaft, we have

$$
T_{A C}=+150 \mathrm{~N} \cdot \mathrm{~m} \quad T_{C D}=-130 \mathrm{~N} \cdot \mathrm{~m} \quad T_{D E}=-170 \mathrm{~N} \cdot \mathrm{~m}
$$

These results are also shown on the torque diagram, Fig. 5-19c.
Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hal

EXAMPLE 5.5 CONTINUED

SOLUTION

Internal Torque. By inspection, the torques in segments $A C, C D$, and $D E$ are different yet constant throughout each segment. Free-body diagrams of appropriate segments of the shaft along with the calculated internal torques are shown in Fig. 5-19b. Using the right-hand rule and the established sign convention that positive torque is directed away from the sectioned end of the shaft, we have

$$
T_{A C}=+150 \mathrm{~N} \cdot \mathrm{~m} \quad T_{C D}=-130 \mathrm{~N} \cdot \mathrm{~m} \quad T_{D E}=-170 \mathrm{~N} \cdot \mathrm{~m}
$$

These results are also shown on the torque diagram, Fig. 5-19c.
Angle of Twist. The polar moment of inertia for the shaft is

$$
J=\frac{\pi}{2}(0.007 \mathrm{~m})^{4}=3.771\left(10^{-9}\right) \mathrm{m}^{4}
$$

Applying Eq. 5-16 to each segment and adding the results algebraically, we have

$$
\boldsymbol{T r} \quad(+15 \cap \mathrm{~N} \cdot \mathrm{~m})(\cap \Delta \mathrm{m})
$$

EXAMPLE 5.5 CONTINUED

Angle of Twist. The polar moment of inertia for the shaft is

$$
J=\frac{\pi}{2}(0.007 \mathrm{~m})^{4}=3.771\left(10^{-9}\right) \mathrm{m}^{4}
$$

Applying Eq. $5-16$ to each segment and adding the results algebraically, we have

$$
\begin{aligned}
\phi_{A}=\sum \frac{T L}{J G}= & \frac{(+150 \mathrm{~N} \cdot \mathrm{~m})(0.4 \mathrm{~m})}{3.771\left(10^{-9}\right) \mathrm{m}^{4}\left[80\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]} \\
& +\frac{(-130 \mathrm{~N} \cdot \mathrm{~m})(0.3 \mathrm{~m})}{\left.3.771\left(10^{-9}\right) \mathrm{m}^{4}\left[80\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right)\right]} \\
& \quad+\frac{(-170 \mathrm{~N} \cdot \mathrm{~m})(0.5 \mathrm{~m})}{\left.3.771\left(10^{-9}\right) \mathrm{m}^{4}\left[80\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right)\right]}=-0.2121 \mathrm{rad}
\end{aligned}
$$

(c)

Since the answer is negative, by the right-hand rule the thumb is directed toward the end E of the shaft, and therefore gear A will rotate as shown in Fig. 5-19d.

The displacement of tooth P on gear A is

$$
s_{P}=\phi_{A} r=(0.2121 \mathrm{rad})(100 \mathrm{~mm})=21.2 \mathrm{~mm} \quad \text { Ans. }
$$

NOTE: Remember that this analysis is valid only if the shear stress does not exceed the proportional limit of the material.

Fig. 5-19

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE 5.6

The two solid steel shafts shown in Fig. 5-20a are coupled together using the meshed gears. Determine the angle of twist of end A of shaft $A B$ when the torque $T=45 \mathrm{~N} \cdot \mathrm{~m}$ is applied. Take $G=80 \mathrm{GPa}$. Shaft $A B$ is free to rotate within bearings E and F, whereas shaft $D C$ is fixed at D. Each shaft has a diameter of 20 mm .

(c)

(a)

Fig. 5-20

EXAMPLE 5.6 CONTINUED

SOLUTION

Internal Torque. Free-body diagrams for each shaft are shown in Fig. 5-20b and 5-20c. Summing moments along the x axis of shaft $A B$ yields the tangential reaction between the gears of $F=$ $45 \mathrm{~N} \cdot \mathrm{~m} / 0.15 \mathrm{~m}=300 \mathrm{~N}$. Summing moments about the x axis of shaft $D C$, this force then creates a torque of $\left(T_{D}\right)_{x}=300 \mathrm{~N}(0.075 \mathrm{~m})=$ $22.5 \mathrm{~N} \cdot \mathrm{~m}$ on shaft $D C$.
Angle of Twist. To solve the problem, we will first calculate the rotation of gear C due to the torque of $22.5 \mathrm{~N} \cdot \mathrm{~m}$ in shaft $D C$, Fig. 5-20c. This angle of twist is

$$
\phi_{C}=\frac{T L_{D C}}{J G}=\frac{(+22.5 \mathrm{~N} \cdot \mathrm{~m})(1.5 \mathrm{~m})}{(\pi / 2)(0.010 \mathrm{~m})^{4}\left[80\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]}=+0.0269 \mathrm{rad}
$$

Since the gears at the end of the shaft are in mesh, the rotation ϕ_{C} of gear C causes gear B to rotate ϕ_{B}, Fig. 5-20b, where

$$
\begin{aligned}
\phi_{B}(0.15 \mathrm{~m}) & =(0.0269 \mathrm{rad})(0.075 \mathrm{~m}) \\
\phi_{B} & =0.0134 \mathrm{rad}
\end{aligned}
$$

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hal

EXAMPLE 5.6 CONTINUED

We will now determine the angle of twist of end A with respect to end B of shaft $A B$ caused by the $45 \mathrm{~N} \cdot \mathrm{~m}$ torque, Fig. 5-20b. We have
$\phi_{A / B}=\frac{T_{A B} L_{A B}}{J G}=\frac{(+45 \mathrm{~N} \cdot \mathrm{~m})(2 \mathrm{~m})}{(\pi / 2)(0.010 \mathrm{~m})^{4}\left[80\left(10^{9}\right) \mathrm{N} / \mathrm{m}^{2}\right]}=+0.0716 \mathrm{rad}$
The rotation of end A is therefore determined by adding ϕ_{B} and $\phi_{A / B}$, since both angles are in the same direction, Fig. 5-20b. We have

$$
\phi_{A}=\phi_{B}+\phi_{A / B}=0.0134 \mathrm{rad}+0.0716 \mathrm{rad}=+0.0850 \mathrm{rad} \quad \text { Ans. }
$$

EXAMPLE 5.8

The solid steel shaft shown in Fig. 5-23a has a diameter of 20 mm . If it is subjected to the two torques, determine the reactions at the fixed
supports A and B.

(a)

(b)

SOLUTION
Equilibrium. By inspection of the free-body diagram, Fig. 5-23b, it is seen that the problem is statically indeterminate since there is only one available equation of equilibrium and there are two unknowns. We require
$\Sigma M_{x}=0 ; \quad-T_{B}+800 \mathrm{~N} \cdot \mathrm{~m}-500 \mathrm{~N} \cdot \mathrm{~m}-T_{A}=0$
Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE 5.8 CONTINUED

Compatibility. Since the ends of the shaft are fixed, the angle of twist of one end of the shaft with respect to the other must be zero. Hence, the compatibility equation becomes

$$
\phi_{A / B}=0
$$

This condition can be expressed in terms of the unknown torques by using the load-displacement relationship, $\phi=T L / J G$. Here there are three regions of the shaft where the internal torque is constant. On the free-body diagrams in Fig. 5-23c we have shown the internal torques acting on the left segments of the shaft which are sectioned in each of these regions. This way the internal torque is only a function of T_{B}. Using the sign convention established in Sec. 5.4, we have

$$
\frac{-T_{B}(0.2 \mathrm{~m})}{J G}+\frac{\left(800-T_{B}\right)(1.5 \mathrm{~m})}{J G}+\frac{\left(300-T_{B}\right)(0.3 \mathrm{~m})}{J G}=0
$$

so that

$$
T_{B}=645 \mathrm{~N} \cdot \mathrm{~m}
$$

Ans.
(c)

Using Eq. 1,

$$
\begin{equation*}
T_{A}=-345 \mathrm{~N} \cdot \mathrm{~m} \tag{Ans.}
\end{equation*}
$$

The negative sign indicates that \mathbf{T}_{A} acts in the opposite direction of that shown in Fig. 5-23b.

EXAMPLE 5.9

The shaft shown in Fig. 5-24a is made from a steel tube, which is bonded to a brass core. If a torque of $T=250 \mathrm{lb} \cdot \mathrm{ft}$ is applied at its end, plot the shear-stress distribution along a radial line of its cross-sectional area. Take $G_{\mathrm{st}}=11.4\left(10^{3}\right) \mathrm{ksi}, G_{\mathrm{br}}=5.20\left(10^{3}\right) \mathrm{ksi}$.

SOLUTION
Equilibrium. A free-body diagram of the shaft is shown in Fig. 5-24b. The reaction at the wall has been represented by the unknown amount of torque resisted by the steel, T_{st}, and by the brass, T_{br}. Working in units of pounds and inches, equilibrium requires

$$
\begin{equation*}
-T_{\mathrm{st}}-T_{\mathrm{br}}+(250 \mathrm{lb} \cdot \mathrm{ft})(12 \mathrm{in} . / \mathrm{ft})=0 \tag{1}
\end{equation*}
$$

Copyright @ 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE 5.9 CONTINUED

Compatibility. We require the angle of twist of end A to be
the same for both the steel and brass since they are bonded together. Thus,

$$
\phi=\phi_{\mathrm{st}}=\phi_{\mathrm{br}}
$$

Applying the load-displacement relationship, $\phi=T L / J G$,

$$
\begin{aligned}
\frac{T_{\mathrm{st}} L}{(\pi / 2)\left[(1 \mathrm{in} .)^{4}-(0.5 \mathrm{in} .)^{4}\right] 11.4\left(10^{3}\right) \mathrm{kip} / \mathrm{in}^{2}}= \\
\frac{T_{\mathrm{br}} L}{(\pi / 2)(0.5 \mathrm{in} .)^{4} 5.20\left(10^{3}\right) \mathrm{kip} / \mathrm{in}^{2}} \\
T_{\mathrm{st}}=32.88 T_{\mathrm{br}}
\end{aligned}
$$

Solving Eqs. 1 and 2, we get

$$
\begin{aligned}
T_{\mathrm{st}} & =2911.5 \mathrm{lb} \cdot \mathrm{in} .=242.6 \mathrm{lb} \cdot \mathrm{ft} \\
T_{\mathrm{br}} & =88.5 \mathrm{lb} \cdot \mathrm{in} .=7.38 \mathrm{lb} \cdot \mathrm{ft}
\end{aligned}
$$

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

EXAMPLE 5.9 CONTINUED

The shear stress in the brass core varies from zero at its center to a maximum at the interface where it contacts the steel tube. Using the torsion formula,

$$
\left(\tau_{\mathrm{br}}\right)_{\max }=\frac{(88.5 \mathrm{lb} \cdot \mathrm{in} .)(0.5 \mathrm{in} .)}{(\pi / 2)(0.5 \mathrm{in} .)^{4}}=451 \mathrm{psi}
$$

For the steel, the minimum and maximum shear stresses are

$$
\begin{aligned}
& \left(\tau_{\mathrm{st}}\right)_{\min }=\frac{(2911.5 \mathrm{lb} \cdot \mathrm{in} .)(0.5 \mathrm{in} .)}{(\pi / 2)\left[(1 \mathrm{in} .)^{4}-(0.5 \mathrm{in} .)^{4}\right]}=989 \mathrm{psi} \\
& \left(\tau_{\mathrm{st}}\right)_{\max }=\frac{(2911.5 \mathrm{lb} \cdot \mathrm{in} .)(1 \mathrm{in} .)}{(\pi / 2)\left[(1 \mathrm{in} .)^{4}-(0.5 \mathrm{in} .)^{4}\right]}=1977 \mathrm{psi}
\end{aligned}
$$

Shear-stress distribution
(c)

Fig. 5-24

The results are plotted in Fig. 5-24c. Note the discontinuity of shear stress at the brass and steel interface. This is to be expected, since the materials have different moduli of rigidity; i.e., steel is stiffer than brass $\left(G_{\mathrm{st}}>G_{\mathrm{br}}\right)$ and thus it carries more shear stress at the interface. Although the shear stress is discontinuous here, the shear strain is not. Rather, the shear strain is the same for both the brass and the steel.

