

3

EXAMPLE	5.2 CONTINUED
	Shear Stress. Since point A is at $\rho = c = 0.75$ in.,
	$\tau_A = \frac{Tc}{J} = \frac{(12.5 \text{ kip} \cdot \text{in.})(0.75 \text{ in.})}{(0.497 \text{ in}^4)} = 18.9 \text{ ksi}$ Ans.
	Likewise for point <i>B</i> , at $\rho = 0.15$ in., we have
	$\tau_B = \frac{T\rho}{J} = \frac{(12.5 \text{ kip} \cdot \text{in.})(0.15 \text{ in.})}{(0.497 \text{ in}^4)} = 3.77 \text{ ksi}$ Ans.
	NOTE: The directions of these stresses on each element at A and B , Fig. 5–11 c , are established from the direction of the resultant internal torque T , shown in Fig. 5–11 b . Note carefully how the shear stress acts on the planes of each of these elements.
	Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

The pipe shown in Fig. 5-12a has an inner diameter of 80 mm and an outer diameter of 100 mm. If its end is tightened against the support at A using a torque wrench at B, determine the shear stress developed in the material at the inner and outer walls along the central portion of the pipe when the 80-N forces are applied to the wrench.

SOLUTION

Internal Torque. A section is taken at an intermediate location C along the pipe's axis, Fig. 5–12*b*. The only unknown at the section is the internal torque **T**. We require

 $\Sigma M_y = 0; 80 \text{ N} (0.3 \text{ m}) + 80 \text{ N} (0.2 \text{ m}) - T = 0$ $T = 40 \text{ N} \cdot \text{m}$

Section Property. The polar moment of inertia for the pipe's cross-sectional area is

$$J = \frac{\pi}{2} [(0.05 \text{ m})^4 - (0.04 \text{ m})^4] = 5.796(10^{-6}) \text{ m}^4$$

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

80 N

200 mm

(a)

EXAMPLE 5.4 CONTINUED
SOLUTION
The torque on the shaft is determined from Eq. 5–10, that is, $P = T\omega$.
Expressing P in foot-pounds per second and ω in radians/second, we have
$P = 5 \operatorname{hp}\left(\frac{550 \operatorname{ft} \cdot \operatorname{lb/s}}{1 \operatorname{hp}}\right) = 2750 \operatorname{ft} \cdot \operatorname{lb/s}$
$\omega = \frac{175 \text{ rev}}{\min} \left(\frac{2\pi \text{ rad}}{1 \text{ rev}}\right) \left(\frac{1 \text{ min}}{60 \text{ s}}\right) = 18.33 \text{ rad/s}$
Thus,
$P = T\omega;$ 2750 ft · lb/s = $T(18.33 \text{ rad/s})$
$T = 150.1 \text{ ft} \cdot \text{lb}$
Applying Eq. 5–12 yields
$\frac{J}{c} = \frac{\pi}{2} \frac{c^4}{c} = \frac{T}{\tau_{\text{allow}}}$
$c = \left(\frac{2T}{\pi\tau_{\text{allow}}}\right)^{1/3} = \left(\frac{2(150.1 \text{ ft} \cdot \text{lb})(12 \text{ in./ft})}{\pi(14 \text{ 500 lb/in}^2)}\right)^{1/3}$
c = 0.429 in.
Since $2c = 0.858$ in., select a shaft having a diameter of
$d = \frac{7}{8}$ in. = 0.875 in. Ans.
Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

SOLUTION Internal Torque. By inspection, the torques in segments <i>AC</i> , <i>CD</i> , and <i>DE</i> are different yet <i>constant</i> throughout each segment. Free-body diagrams of appropriate segments of the shaft along with the calculated internal torques are shown in Fig. 5–19 <i>b</i> . Using the right-hand rule and the established sign convention that positive torque is directed away from the sectioned end of the shaft, we have $T_{AC} = +150 \text{ N} \cdot \text{m}$ $T_{CD} = -130 \text{ N} \cdot \text{m}$ $T_{DE} = -170 \text{ N} \cdot \text{m}$ These results are also shown on the torque diagram, Fig. 5–19 <i>c</i> . Angle of Twist. The polar moment of inertia for the shaft is $J = \frac{\pi}{2} (0.007 \text{ m})^4 = 3.771(10^{-9}) \text{ m}^4$ Applying Eq. 5–16 to each segment and adding the results algebraically, we have $TI = \frac{(+150 \text{ N} \cdot \text{m})(0.4 \text{ m})}{(2000000000000000000000000000000000000$	$T_{AC} = 150 \text{ N} \cdot \text{m}$ $T_{CD} = 130 \text{ N} \cdot \text{m}$ $T_{CD} = 130 \text{ N} \cdot \text{m}$ $T_{DE} = 170 \text{ N} \cdot \text{m}$ $T_{DE} = 170 \text{ N} \cdot \text{m}$ $T_{DE} = 170 \text{ N} \cdot \text{m}$ $T_{DE} = 100 \text{ N} \cdot \text{m}$
---	---

EXAMPLE 5.6 CONTI	NUED
	SOLUTION Internal Torque. Free-body diagrams for each shaft are shown in Fig. 5–20 <i>b</i> and 5–20 <i>c</i> . Summing moments along the <i>x</i> axis of shaft <i>AB</i> yields the tangential reaction between the gears of $F =$ $45 \text{ N} \cdot \text{m}/0.15 \text{ m} = 300 \text{ N}$. Summing moments about the <i>x</i> axis of shaft <i>DC</i> , this force then creates a torque of $(T_D)_x = 300 \text{ N} (0.075 \text{ m}) =$ $22.5 \text{ N} \cdot \text{m}$ on shaft <i>DC</i> . Angle of Twist. To solve the problem, we will first calculate the rotation of gear <i>C</i> due to the torque of $22.5 \text{ N} \cdot \text{m}$ in shaft <i>DC</i> , Fig. 5–20 <i>c</i> . This angle of twist is $TL = (\pm 22.5 \text{ N} \cdot \text{m})(1.5 \text{ m})$
	$\phi_C = \frac{TL_{DC}}{JG} = \frac{(+22.5 \text{ N} \cdot \text{m})(1.5 \text{ m})}{(\pi/2)(0.010 \text{ m})^4 [80(10^9) \text{ N/m}^2]} = +0.0269 \text{ rad}$ Since the gears at the end of the shaft are in mesh, the rotation ϕ_C
	of gear C causes gear B to rotate ϕ_B , Fig. 5–20b, where
	$\phi_B(0.15 \text{ m}) = (0.0269 \text{ rad})(0.075 \text{ m})$ $\phi_B = 0.0134 \text{ rad}$
	Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Г

EXAMPLE 5.6 CONTINUED	
	We will now determine the angle of twist of end A with respect to end B of shaft AB caused by the 45 N \cdot m torque, Fig. 5–20b. We have
	$\phi_{A/B} = \frac{T_{AB}L_{AB}}{JG} = \frac{(+45 \text{ N} \cdot \text{m})(2 \text{ m})}{(\pi/2)(0.010 \text{ m})^4[80(10^9) \text{ N/m}^2]} = +0.0716 \text{ rad}$
	The rotation of end A is therefore determined by adding ϕ_B and $\phi_{A/B}$, since both angles are in the <i>same direction</i> , Fig. 5–20b. We have
	$\phi_A = \phi_B + \phi_{A/B} = 0.0134 \text{ rad} + 0.0716 \text{ rad} = +0.0850 \text{ rad}$ Ans.
	Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

